Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xian-Ming Zhang,^a Rui-Qin Fang,^a Hai-Shun Wu^a and Seik Weng Ng^b*

^aSchool of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (C–C) = 0.006 Å R factor = 0.035 wR factor = 0.068 Data-to-parameter ratio = 9.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved catena-Poly[[triaquacobalt(II)]- μ -2,3-pyridinedicarboxylato- $\kappa^2 O^2$: O^3]

The structure of the title one-dimensional coordination polymer, $[Co(C_7H_3NO_4)(H_2O)_3]_n$, contains a Co^{II} ion, a pyridine-2,3-dicarboxylate dianion and three water molecules in the asymmetric unit. The coordination polymer forms a one-dimensional zigzag chain structure along the *c* axis. The chains are interconnected by $O-H \cdots O$ hydrogen bonds into a three-dimensional framework.

Comment

Recently, Zhang & You (2003) reported the structure of a onedimensional zigzag coordination polymer of diaqua(pyridine-2,3-dicarboxylato)cobalt(II). In that structure, each cobalt(II) ion is bound to three pyridine-2,3-dicarboxylate ligands and two water molecules. In each ligand, one of the carboxylate groups is involved in N,O-chelation [Co-N = 2.107 (2) Å and Co-O = 2.061 (2) Å], while the other is used to bridge Co^{II} atoms [Co-O = 2.182 (2) and 2.192 (2) Å]. A variation of the synthesis yielded the title compound, triaqua(pyridine-2,3-dicarboxylato)cobalt(II), (I). We present its structure here.

Experimental

Cobalt diacetate tetrahydrate (0.25 g, 1 mmol) and pyridine-2,3-dicarboxylic acid (0.17 g, 1 mmol) were dissolved in water (7 ml) to which sodium hydroxide (4 M) was added so that the pH = 7. The Received 7 November 2003 Accepted 11 November 2003 Online 22 November 2003

Acta Cryst. (2003). E59, m1143–m1145 DOI: 10.1107/S1600536803026023 Zhang, Fang, Wu and Ng • [Co(C₇H₃NO₄)(H₂O)₃] m1143

Figure 1

ORTEPII (Johnson, 1976) plot of a part of the polymeric $[Co(C_7H_3. NO_4)(H_2O)_3]_n$ chain, with displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) $\frac{1}{2} - x$, y, $z - \frac{1}{2}$.]

Figure 2

 $ORTEP\rm{II}$ (Johnson, 1976) plot, showing the zigzag chain formation along the c axis of the orthorhombic cell.

solution was transferred into a 15 ml Teflon-lined stainless-steel bomb and it was held at 443 K for 120 h. The bomb was cooled slowly to room temperature, to yield red plate-shaped crystals of the title compound in about 65% yield. CHN analysis, found: C 50.55, H 2.46, N 8.41%; calculated for $C_7H_9CoNO_4$: C 50.61, H 2.43, N 8.43%.

Crystal data

$[Co(C_7H_3NO_4)(H_2O)_3]$
$M_r = 278.08$
Orthorhombic, Pca2 ₁
$a = 16.082 (3) \text{\AA}$
b = 6.745(1) Å
c = 8.467 (2) Å
$V = 918.4 (3) \text{ Å}^3$
Z = 4
$D_{\rm r} = 2.011 {\rm Mg m^{-3}}$

Mo K α radiation Cell parameters from 25 reflections $\theta = 7.5-15.0^{\circ}$ $\mu = 1.89 \text{ mm}^{-1}$ T = 298 (2) KPlate, red $0.28 \times 0.20 \times 0.04 \text{ mm}$

Data collection

Siemens R3m four-circle
diffractometer
ω scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\rm min} = 0.62, \ T_{\rm max} = 0.93$
3513 measured reflections
1480 independent reflections
1380 reflections with $I > 2\sigma(I)$
Refinement

Refinemen

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.068$ S = 0.971480 reflections 163 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected geometric parameters (Å, °).

Co1-O1	2.044 (3)	Co1–O2w	2.175 (3)
Co1-O3 ⁱ	2.087 (3)	Co1–O3w	2.057 (3)
Co1–O1w	2.084 (3)	Co1-N1	2.133 (3)
$01 - C_01 - O_3^i$	978(1)	$O3^i - Co1 - N1$	104 1 (1)
01 - Co1 - O1w	92.3 (1)	O1w-Co1-O2w	92.9 (1)
O1-Co1-O2w	174.8 (1)	O1w-Co1-O3w	83.9 (1)
O1-Co1-O3w	95.8 (1)	O1w-Co1-N1	167.4 (1)
O1-Co1-N1	78.5 (1)	O2w-Co1-O3w	83.7 (1)
$O3^i - Co1 - O1w$	85.5 (1)	O2w-Co1-N1	96.3 (1)
$O3^i - Co1 - O2w$	83.7 (1)	O3w-Co1-N1	88.5 (1)
O3 ⁱ -Co1-O3 <i>w</i>	163.1 (1)		

 $\begin{aligned} R_{\rm int} &= 0.036\\ \theta_{\rm max} &= 25.0^\circ\\ h &= -19 \rightarrow 14\\ k &= -8 \rightarrow 8\\ l &= -8 \rightarrow 10\\ 2 \text{ standard reflections}\\ \text{every 120 reflections}\\ \text{intensity decay: none} \end{aligned}$

 $w = 1/[\sigma^2(F_o^2) + (0.0348P)^2]$

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta\rho_{\rm max} = 0.30 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.34 \text{ e} \text{ Å}^{-3}$

691 Friedel pairs

Flack parameter = 0.06(2)

where $P = (F_o^2 + 2F_c^2)/3$

Absolute structure: Flack (1988);

Symmetry code: (i) $\frac{1}{2} - x$, y, $z - \frac{1}{2}$.

Table 2		
Hydrogen-bonding geometry	(Å, °]).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} 01w - H1w1 \cdots 04^{ii} \\ 01w - H1w2 \cdots 02w^{iii} \\ 02w - H2w2 \cdots 02^{ii} \\ 02w - H2w1 \cdots 04^{iv} \\ 03w - H3w2 \cdots 03^{ii} \\ 03w - H3w2 \cdots $	$\begin{array}{c} 0.85 \ (1) \\ 0.85 \ (1) \\ 0.86 \ (1) \\ 0.86 \ (1) \\ 0.84 \ (1) \\ 0.84 \ (1) \end{array}$	1.87 (1) 1.98 (1) 1.86 (1) 1.87 (2) 1.93 (2)	2.720 (4) 2.825 (5) 2.700 (4) 2.697 (4) 2.752 (4) 2.698 (5)	172 (3) 175 (4) 167 (4) 161 (4) 165 (4)
03w-H3w102	0.85 (1)	1.85 (1)	2.098 (3)	1/6 (4)

Symmetry codes: (ii) $\frac{1}{2} + x, 1 - y, z$; (iii) $1 - x, 1 - y, z - \frac{1}{2}$; (iv) $\frac{1}{2} + x, -y, z$; (v) $\frac{1}{2} - x, y, \frac{1}{2} + z$.

Water H atoms were located in a difference map and their positional parameters were refined subject to an O–H restraint of 0.85 (1) Å and an H···H restraint of 1.39 (1) Å (ten restraints in total). The aromatic H atoms were placed at calculated positions in the riding-model approximation (C–H = 0.93 Å). The isotropic displacement parameters of all H atoms were set to 1.2 times $U_{\rm eq}$ of the parent atoms.

Data collection: R3m Software (Siemens, 1990); cell refinement: R3m Software; data reduction: R3m Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

References

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.

- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Siemens (1990). R3m Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Zhang, H.-T. & You, X. Z. (2003). Acta Cryst. C59, m313-m314.